DIN 17172-78 STEEL PIPES FOR PIPE LINES FOR THE TRANSPORT OF COMBUSTIBLE FLUIDS AND GASES

For connection with the International Draft Standards 3183 and 3845 published by the International Organization for Standardization (ISO) as well as with the Draft for spiral-welded pipes at present in preparation, see Explanations.

1. Scope

These conditions of delivery apply to seamless and to welded pipes made from the unalloyed and low alloy steels specified in Table 1 for the construction of long distance pipelines (see Section3) 1),2).

Grade	Mfg.	Chemical com	position (%)						
Giaue	Process	С	Si	Mn	Р	S	Ni	Cr	Мо	Others
As Rolled or No	ormalized Ste	eel								
StE210.7	S, E, A	0.17Max	0.45Max	0.35Min	0.040Max	0.035Max	-	-	-	-
StE240.7	S, E, A	0.17Max	0.45Max	0.40Min	0.040Max	0.035Max	-	-	-	-
StE290.7	S, E, A	0.22Max	0.45Max	0.50~1.10	0.040Max	0.035Max	-	-	-	-
StE320.7	S, E, A	0.22Max	0.45Max	0.70~1.30	0.040Max	0.035Max	-	-	-	-
StE360.7	S, E, A	0.22Max	0.55Max	0.90~1.50	0.040Max	0.035Max	-	-	-	-
StE385.7	S, E, A	0.23Max	0.55Max	1.00~1.50	0.040Max	0.035Max	-	-	-	-
StE415.7	S, E, A	0.23Max	0.55Max	1.00~1.50	0.040Max	0.035Max	-	-	-	-
Thermo Mecha	nical Treated	I Steel								
StE290.7TM	S, E, A	0.04~0.12	0.40Max	1.00~1.50	0.035Max	0.025Max	-	-	-	-
StE207.7TM	S, E, A	0.04~0.12	0.40Max	0.70~1.50	0.035Max	0.025Max	-	-	-	-
StE360.7TM	S, E, A	0.04~0.12	0.45Max	0.90~1.50	0.035Max	0.025Max	-	-	-	-
StE385.7TM	S, E, A	0.04~0.14	0.45Max	1.00~1.60	0.035Max	0.025Max	-	-	-	-
StE415.7TM	S, E, A	0.04~0.14	0.45Max	1.00~1.60	0.035Max	0.025Max	-	-	-	-
StE445.7TM	S, E, A	0.04~0.16	0.55Max	1.00~1.60	0.035Max	0.035Max	-	-	-	-
StE480.7TM	S, E, A	0.04~0.16	0.55Max	1.10~1.70	0.035Max	0.035Max	-	-	-	-

Grade	Material	Tensile Test MPa or N/mm ²	Remarks	
Glaue	number	Min Yield point	Tensile Strength	(Similar to JIS)

StE210.7	1.0307	205	325~440	(STPG370)
StE240.7	1.0457	235	370~490	-
StE290.7	1.0484	275	420~540	-
StE320.7	1.0409	325	460~580	-
StE360.7	1.0582	360	510~630	-
StE385.7	1.8970	380	530~680	-
StE415.7	1.8972	410	550~770	-
StE290.7TM	1.0429	295	420~540	-
StE207.7TM	1.0430	325	460~580	-
StE360.7TM	1.0578	360	510~630	-
StE385.7TM	1.8971	380	530~680	-
StE415.7TM	1.8973	380	550~700	-
StE445.7TM	1.8975	440	560~710	-
StE480.7TM	1.8977	480	600~750	-

Table 1. Chemical composition of steels (ladle analysis) 1)

			Û.	-	、 <u>,</u>						
Steel grade			Chemical composit								
Code number Material number	Kind of deoxidation 2)	C 3)	Si	Mn 3), 4)	Р	S	Others				
			maximum			maximum					
Untreated (see Se	Jntreated (see Section 6.2.1.1.a) or normalized steels										
StE 210.7	1.0307	R 5)	0.17	0.45	≥ 0.35	0.040	0.035				
StE 240.7	1.0457	R 5)	0.17	0.45	≥ 0.40	0.040	0.035				
StE 290.7	1.0484	RR 6)	0.22	0.45	0.50 to 1.10	0.040	0.035				
StE 320.7	1.0409	RR 6)	0.22	0.45	0.70 to 1.30	0.040	0.035				
StE 360.7	1.0582	RR 6)	0.22	0.55	0.90 to 1.50	0.040	0.035				
StE 385.7	1.8970	RR 6)	0.23	0.55	1.00 to 1.50	0.040	0.035	7)			
StE 415.7	1.8972	RR 6)	0.23	0.55	1.00 to 1.50	0.040	0.035				

Global Marketing for Tube & Pipe

Thermo-mechar	hermo-mechanically treated steels												
StE 290.7	1.0429		0.40	0.40	0.50 to 1.50	0.035	0.025						
StE 320.7	1.0430]	0.40	0.40	0.70 to 1.50	0.035	0.025						
StE 360.7	1.0578]	0.45	0.45	0.90 to 1.50	0.035	0.025						
StE 385.7	1.8971	RR 7)	0.45	0.45	1.00 to 1.60	0.035	0.025	7)					
StE 415.7	1.8973]	0.45	0.45	1.00 to 1.60	0.035	0.025						
StE 445.7	1.8975]	0.55	0.55	1.00 to 1.60	0.035	0.025						
StE 480.7	1.8977]	0.55	0.55	1.10 to 1.70	0.035	0.025						

1) Elements not featured in this Table may not be intentionally added to the steel without purchaser's consent, other than for the purpose of finish-treatment of the melt. All suitable precautions shall be taken avoid the introduction of any such elements from the scrap or from any other substances used during manufacture, because such elements may adversely affect the mechanical properties and the usability.

2) R = killed (semi-killed steel is not included herein), RR = specially killed.

For every reduction of the maximum C content by 0.01%, a corresponding increase of the maximum manganese content by 0.05% is permissible, but only up to 1.9% Mn maximum.
 In the case of wall thicknesses > 15 mm, the specified manganese content may be exceeded by 0.10% in the case of thermo-mechanically treated steels.

5) These steels can also be supplied specially killed by agreement; in this event the steel grades shall be designated RRStE 210.7 (material number 1.0319) resp. RRStE 240.7 (material number 1.0459).

6) The steels contain an adequate aluminum content to achieve the necessary fineness of grain, i.e. as a general rule ≥ 0.020% Al met.

7) In order to attain the mechanical properties and a fine-grained structure, steels StE 360.7 StE 385.7 as well as StE 415.7 may. and all thermo-mechanically treated steels must contain adequate of e.g. vanadium and niobium, in addition to aluminum. These materials may in part only be present in trace form. The sum total of these additives, in the case of wall thicknesses \leq 15 mm, shall not exceed 0.15% in the case of steels StE 360.7, StE 385.7 as well as StE415.7, 0.16% in the case of steels StE 290.7 TM, StE 320.7 TM as well as StE 360.7 TM, and 0.20% in the case of the remaining thermo-mechanically treated steels; in the case of wall thicknesses > 15mm, the sum total of these additives shall not exceed 0.17% in the case of steels StE 285.7 and StE 415.7, 0.17% in the case of steels StE 290.7 TM as well as StE360.7 TM, and 0.20% in the case of steels StE 360.7, TM, and 0.20% in the case of steels StE 360.7, TM, and 0.20% in the case of steels StE 360.7, TM, and 0.20% in the case of steels StE 360.7, TM, and 0.20% in the case of steels StE 360.7, TM, and 0.20% in the case of steels StE 360.7, TM, and 0.20% in the case of the remaining thermo-mechanically treated steels; in the case of steels StE 290.7 TM, StE 302.7 TM as well as StE360.7 TM, and 0.20% in the case of steels StE 360.7, StE 360.7, 0.18% in the of steels StE 285.7 and StE 415.7, 0.17% in the case of steels StE 290.7 TM, StE 302.7 TM as well as StE360.7 TM, and 0.20% in the case of the remaining thermo-mechanically content shall be \leq 0.12 in every case.

8) The C content shall not be less than 0.04%.

Table 2. Permissible variations of product analysis from the limiting values applicable to the ladle analysis

Element	ermissible variation of product analysis from the limiting values of the ladle analysis 1)					
C	+0.02					
C C	-0.01					

Si	+0.03
51	0
Mn	±0.06
0	+0.005
۲ ۲	0
c	+0.005
5	ο
1) For a melt, the	variation of an element, in the event of several product analyses, may only be situated either below th
minimum value or	only above the maximum value of the range specified for the ladle analysis, but not both simultaneously.

6.2.1.1 Seamless pipes:

a) Untreated, after a hot forming operation by rolling, pressing or drawing, on condition that said hot forming operation achieves an irreproachable structure condition with adequate uniformity without any further treatment;

b) Normalized Cold rolled or cold drawn pipes must be normalized in every case.

6.2.1.2. Welded pipes:

a) Pipes welded from normalized 6) and subsequently cold curved plate or strip no further heat-treatment;

b) Pipes welded from normalized 6) and subsequently hot curved plate or strip under controlled temperature command, no further heat-treatment;

c) Pipes welded from hot or cold curved plate or strip and normalized;

d) In the case of electrically pressure welded pipes which are not normalized around the entire periphery, an annealing of the weld must be carried out in order to achieve as uniform as possible a distribution of the strength properties.

Table3.	Mechanica	I properties in the	as-delivered	condition 1)	

Steel grade Untreated (see Section 6.2 or normalized si	2.1.1. a)	Steel grade Thermo-mech treated steels	,	Yield point 2), 3), 4)	3), 5)		(lo= 5do)	Absorbed energy	for the folding test	test on pressure welded and	С		
Code number	Material number	Code number	Material number				min.		pipes 7)	seamless	5L	5LX	5LS
StE 210.7	1.0307	-	-	210	320 to 440	≤ 0.85	26	see	2s	see	A	-	А
StE 240.7	1.0457	-	-	240	370 to 490		24	Table 4	2s	Section	В	-	В
StE 290.7	1.0484	StE 290.7 TM	1.0429	290	420 to 540		23		3s	7.5.4	-	X42	X42

www.TubeSolution.com

Global Marketing for Tube & Pipe

StE 320.7	1.0409	StE 320.7 TM	1.0430	320	460 to 580		21]	4s	- X46	X46
StE 360.7	1.0582	StE 360.7 TM	1.0578	360	510 to 630		20]	4s	- X52	X52
StE 385.7	1.8970	StE 385.7 TM	1.8971	385	530 to 680		19		5s	- X56	X56
StE 415.7	1.8972	StE 415.7 TM	1.8973	415	550 to 700	≤ 0.85 8) ≤ 0.85	18		5s	- X60	X60
-	-	StE 445.7 TM	1.8975	445	560 to 710	≤ 0.90 3)	18		6s	- X65	X65
-	-	StE 480.7 TM	1.8977	480	600 to 750	≤ 0.90 3)	18		6s	- X70	X70

1) Make sure by competent further processing of the pipes that the specified limiting values are neither exceeded nor falen short of.

2) In the case of a clearly defined yield point, the upper yield point shall apply, in the other case the yield limit for 0.5% total elongation (Rt 0.5).

3) If the value determined for the yield point for steel StE 415.7 TM is slighter than 520N/m² or higher than 555N/m² for steel StE 445.7M, or higher than 600 N/m² for steel StE 480.7

TM, then the yield point ratio must be \leqslant 0.85 (see also Foot note 5) (see also Explanations).

5) Exceeding the upper limiting value by 30 N/m² may not be objected. This applies to untreated or normalized steels StE 210.7 to StE 320.7 inclusive, but only on condition that the ratio of yield point to tensile strength does not exceed the value of 0.80.

6) These values apply to transverse specimens taken from the parent meta, Where longitudinal specimens are tested (see Fig.1), the values of elongation to be achieved

7) s = wall thickness of pipe, bending angle = 180° (see Section 7.4.2.3).

8) This value applies to steel grade StE 415.7 (see also Footnote 5).

Table 4. Minimum values of absorbed energy (ISO -V specimens) at 0° C

Nominal outside				Absorbed energy at 0° C	
diameter da mm	Type of pipe		Position of specimen	J 1), 2)	Individual value J 2) min
Up to 500 3)	Seamless Pressure welded Fusion welded	Parent metal	Longitudinal to pipe axis (see Fig. 1)	47	39
over 500	Seamless Pressure welded Fusion welded	Parent metal	Transverse to pipe axis (see Fig. 1)	27 4)	22 4)
over 500	Welded	Weld	Transverse to weld axis	27	22

Global Marketing for Tube & Pipe

		(see Fig. 1)								
1) Mean value from 3 tests										
2) See Section 7.5.3.										
3) In special cases where pipes	with outside diameters of	300 to 500 mm and wall thicknesses of 6.3 mm and ov	er are concerned, the verif	ication of the absorbed energy						
may be agreed in the circumfer	ential direction when order	ring. In this event, the values of absorbed energy must	also be agreed.							
4) In the case of steel grades StE 385.7 (1.8970), StE 385.7 TM (1.8971), StE 415.7 (1.8972), StE 415.7 TM (1.8973), StE 445.7 TM (1.8975) and StE 480.7 TM (1.8977),										
the minimum values shall be 31	J for the mean value and	24 J for the individual value.								